If it's not what You are looking for type in the equation solver your own equation and let us solve it.
32=128+16t-16t^2
We move all terms to the left:
32-(128+16t-16t^2)=0
We get rid of parentheses
16t^2-16t-128+32=0
We add all the numbers together, and all the variables
16t^2-16t-96=0
a = 16; b = -16; c = -96;
Δ = b2-4ac
Δ = -162-4·16·(-96)
Δ = 6400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6400}=80$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-80}{2*16}=\frac{-64}{32} =-2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+80}{2*16}=\frac{96}{32} =3 $
| .25(16x-12)=-(3x-17) | | -6x+8=10x-20 | | -20=1/3x-15 | | -13-5x=-8(3x+4) | | 5x-2=2x13 | | 3x/3=22/3 | | 0=128+16t-16t^2 | | 9(q-20=3(q-12) | | -20x+23+-16x+13=180 | | T=128+16t-16t^2 | | (1/2)m-4=-16 | | -a-5=-7 | | D-8.7=6;d=14.7 | | -x3-4=13 | | 2/3x-4=x+1/3 | | 6y+4+4y+9=63 | | (12.25+12.25*0.06)+(x+x*0.06)=19.08 | | -3(r+6)=63 | | 520÷x=65 | | 180÷x^2=5 | | 5=x4=1 | | 5(+6)+3x=86 | | 8(6x+2)=6x | | (n3)-8=-2 | | -3(2x+4)=-6x-12 | | 10/3+1/4t=9 | | 5+x+8/4=23 | | X+(2+x)=22 | | 4x-13=12-4x | | 2x+13=4(3x-1) | | 0=6+13t-5t^2 | | 9+v=4-2(-v-6) |